Fine Asymptotic Geometry in the Heisenberg Group

نویسندگان

  • MOON DUCHIN
  • CHRISTOPHER MOONEY
چکیده

For every finite generating set on the integer Heisenberg group H(Z), we know from a fundamental result of Pansu on nilpotent groups that the wordmetric has the large-scale structure of a Carnot-Carathéodory Finsler metric on the real Heisenberg group H(R). We study the properties of those limit metrics and obtain results about the geometry of word metrics that reflect the dependence on generators, notably, asymptotic density results for geometric properties. For example, stability of geodesics and distortion of subgroups can be made statistical. This contributes to a small literature on asymptotic density results that depend nontrivially on generators for nonfree groups. Our methods also allow us to a pursue a “geometry of numbers” for nilpotent groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A random walk on the permutation group, some formal long-time asymptotic relations

We consider the group of permutations of the vertices of a lattice. A random walk is generated by unit steps that each interchange two nearest neighbor vertices of the lattice. We study the heat equation on the permutation group, using the Laplacian associated to the random walk. At t = 0 we take as initial conditions a probability distribution concentrated at the identity. A natural conjecture...

متن کامل

B-FOCAL CURVES OF BIHARMONIC B-GENERAL HELICES IN Heis

In this paper, we study B-focal curves of biharmonic B -general helices according to Bishop frame in the Heisenberg group Heis   Finally, we characterize the B-focal curves of biharmonic B- general helices in terms of Bishop frame in the Heisenberg group Heis        

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Geometric Aspects of the Heisenberg Group

I provide a background of groups viewed as metric spaces to introduce the notion of asymptotic dimension of a group. I analyze the asymptotic dimension of Z ⊕ Z and the free group on two generators to better understand the concept of asymptotic dimension. The asymptotic dimension of the Heisenberg group, H, asdimH, has been shown to be three using advanced mathematics. I will try to show that a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014